Analysis of Candidate Communication Architectures for TAMDAR Implementation in 2007-2015

Michael Castle April 28, 2004 JOHNS HOPKINS

Applied Physics Laboratory

Outline

- TAMDAR Mission
- Architecture Analysis Process
- Data Link Requirements
- Analysis Methods
- Architectures & Standouts
- Summary

Tropospheric

Airborne

Meteorological

DAta

Reporting

TAMDAR Mission

- TAMDAR enables meteorological data collection from aircraft
 - Improving weather forecast models
 - Hazard alerts to nearby airborne users
- Targeted implementation onboard GA/regional aircraft
 - Complements other systems like Meteorological Data
 Collection and Reporting Service (MDCRS) on larger aircraft
 - Content: wind, temperature, moisture, turbulence, icing, etc.\
- Focus of architecture study is on communications / datalink capabilities
 - Long term deployment (circa 2015) is a goal of the study

Architecture Analysis Process

TAMDAR Requirements

- Requirements were examined in the following areas:
 - Channel Capacity
 - Air-Ground
 - Air-Air
 - Coverage
 - Latency
 - Cost
 - Others
 - Platform Constraints, Spectrum, Infrastructure
- Various sources were used to derive estimates for requirements

Req: Capacity – TAMDAR Message

- Capacity is based on message size and frequency of transmission
- Data fields developed by NASA/Glenn
- Overhead (20%) is added to account for framing, error detection, reserve content, etc.
- Estimated message size is 250 bits

Data Fields – Bits	Data Fields - Bits		
General	Wind		
ID – 16	Speed – 8		
Aircraft Type – 8	Direction – 8		
Date – 16	Temperature – 12		
Time – 20	Water		
Roll Angle – 4	Humidity – 8		
Phase of Flight –4	Liquid Vapor Mix Ratio – 8		
Position	Peak Liq. H20 – 8		
Latitude – 20	Ave. Liq. H20 – 8		
Longitude – 20	Super Cooled Large Droplet –4		
Baro. Altitude – 16	Icing – 4		
Turbulence	Data Collection Bit Total		
Average – 8	208		
Peak – 8			

Req: Air-Ground Capacity

- Frequency of transmission is based on DO-252 (AUTOMET MIS) estimates
 - Takeoff: 1 report per 6 seconds
 - Climb/Descent: 1 report per 60 seconds
 - Cruise: 1 report per 180 seconds
- Average Capacity is then estimated using a 250 bit message:
 - Takeoff: 42 bps
 - Climb/Descent: 4.2 bps
 - Cruise: 1.4 bps (4.2 bps due to latency req.)

Req: Air-Air Capacity

- Requirement for Air-to-air capacity (at receiver) is difficult to estimate
 - Requires assumptions about the "radius of interest" for TAMDAR reports & estimates of equipped air traffic within this volume
 - Communications and processing complexity to support airair transfer is significantly higher than a pure downlink configuration
 - May enhance business case for TAMDAR adoption
- Based on estimates of the number of aircraft in the radius of interest (about 100 NM) in each flight phase, an aggregate capacity is estimated at 2-3 kbps

Req: Coverage & Latency

- Air-Ground Coverage
 - Complete or near-complete CONUS coverage
- Air-Air Coverage
 - 100 NM radius around TAMDAR transmitter used as strawman assumption
- Latency
 - Data received in 1-minute or less after time of measurement
 - Latency affects instantaneous capacity of cruise phase

Req: Cost

- TAMDAR is a more complex business case than other weather data in cockpit. Benefit to TAMDAR-equipped aircraft in-flight:
 - Hazard warnings
 - Real-time validation of weather information / forecasts
- Old Dominion University TAMDAR study
 - 67% of pilots would pay less than \$2000 for TAMDAR system and only 17% would pay more than \$4000 (NRE)
 - Assume minimum recurring cost; subsidies may be a potential means of supporting capability
- Desirable to augment existing communication system with additional TAMDAR functionality
- NASA GRC suggested using \$1000 as Cost requirement

Req: Implementation

- "Implementation" requirements are significant, however in the long term, potential issues can be mitigated
- Platform Constraints system must be able to be equipped on aircraft
- Spectrum frequency allocation in US
- Infrastructure needed for collection of TAMDAR reports at national repository (NOAA/NWS)
 - Terrestrial LOS systems would require an infrastructure with terrestrial network connectivity to be viable
 - SATCOM systems may support direct feed to a national repository

Requirements Summary

Air-Ground Capacity	transmit: 4.2 bps - 42 bps		
Air-Air Capacity	transmit: 4.2 bps - 42 bps receive: ~2-3 kbps		
Coverage	CONUS (air-ground)		
	100 NM radius (air-air)		
Latency	≤ one minute		
Cost	Under \$1000 NRE; min. recurring		
Platform Constraints	GA aircraft installations		
Spectrum	Allocated spectrum for aviation		
Infrastructure	Receiver network & support data transfer to CONUS repository		

Analysis Methods (1 of 2)

- Previous TAMDAR Architecture study focused on 2003 implementation
- Classes of systems had been identified
 - SATCOM
 - Terrestrial Based
 - Broadcast
 - Cellular
 - Addressable
- General characteristics of each architecture class emerged from that analysis

Analysis Methods (2 of 2)

- For each system:
 - Air-to-Ground Capacity is treated as first-pass threshold requirements
 - Other requirements scored to provide gradations
- All systems would require system engineering and optimization to host TAMDAR functionality

Satellite (1 of 2)

- Architecture is limited by air-toair transfer
- Style 1: Point to point
 - E.g. Air Satellite Air
 - High capacity, but supported
- Style 2: Ground coordinated
 - Lower bandwidth, but not developed currently
 - Signal is passed through ground station between satellite broadcast for filtration, e.g. Air- Sat. – Gnd – Sat. – Air
 - Hybrid satellite, air-ground via downlink + air-air through ground rebroadcast
- Many systems analyzed

Satellite (2 of 2)

Strengths

- Air-Ground capacity is easily satisfied
- Coverage is better than terrestrial systems + easily expandable

Weaknesses

- Air-air transfer is a challenge
- Cost of SATCOM receivers on aircraft relatively high
- In certain SATCOM systems, latency is an issue
 - Store-and-forward systems are not likely to satisfy capacity/latency requirements
- Aviation platforms limited at the current time
- SATCOM systems are inherently volatile (cost, maintenance, etc...)
- Standouts : Iridium & Globalstar
 - Lower cost & current aviation platforms

Terrestrial: Broadcast (1 of 2)

- Systems considered:
 - VDL Mode 4
 - 1090 Extended Squitter
 - UAT
 - GATElink
- Strengths
 - Air-Ground & Air-Air capacity requirements are easily satisfied
 - Low Latency

Terrestrial: Broadcast (2 of 2)

Weaknesses

- Coverage limited by line-of-sight many ground stations to achieve CONUS coverage
- Cost of infrastructure and receivers on aircraft a potential issue
- Standouts : UAT
 - FAA sponsored deployment of ADS-B infrastructure
 - UAT targeted for GA / regional users

Terrestrial: Cellular (1 of 2)

- Different architecture to support air-air transfer
 - Point to point
 - Ground rebroadcast
- Systems considered
 - Aircell
 - MagnaStar
 - 3G/4G cellular
 - Mobitex

Terrestrial: Cellular (2 of 2)

Strengths

- Air-Ground capacity is easily satisfied
- Massive infrastructure throughout CONUS provides coverage and cost-benefit

Weaknesses

- Air-air messaging is a challenge
- Interference with ground-based systems
- Issues with augmenting a deployed system
- Aviation platform issues

Standouts : AirCell

- Aviation platform issues are solved
- Cross-polarization to reduce interference with ground systems
- Cooperative agreement with cellular providers

Terrestrial: Addressable (1 of 2)

- Systems considered
 - VDL Mode 2
 - VDL Mode 3
 - ACARS

 - HFDL
 - 802.11 Wireless Links

Terrestrial: Addressable (2 of 2)

- Strengths
 - Air-Ground capacity is easily satisfied
 - Aviation platforms well established
- Weaknesses
 - Air-air messaging is a challenge
 - Broadcast Mode may mitigate issue
 - Traffic loading can be high
- Standouts : Mode S
 - Broadcast mode for air-air communications

Standout Scores for Each Class

Requirement	Globalstar	UAT	AirCell	Mode S
Air-Air Capacity	0	2	0	1
Coverage	2	1	2	1
Latency	1	2	1	1
Cost	1	0	1	1
Other Issues	2	2	2	1
Total	6	7	6	5
Ave. Class Score	4	5	3	3

Scoring Key

2: System supports requirement with substantial margin

1: System can support requirement

0: Information obtained is currently inadequate to score

-1: System does not meet requirement

Findings

- Some TAMDAR requirements are easily satisfied almost all datalinks can meet these
 - Air-ground capacity and Latency
- Several requirements are not easily satisfied greatly limits datalink options
 - Cost and Air-air capacity
- Most preferable TAMDAR datalink system is one of the standout LOS systems: UAT, AirCell, Mode S
- Hybrid solution (e.g. LOS + SATCOM, SDR) possible in future, not currently a realistic option